高三物理教案:《追及与相遇》教学设计
52fw.cn 07-10 次遇见 一、相遇
指两物体分别从相距x的两地运动到同一位置,它的特点是:两物体运动的位移的矢量和等于x,分析时要注意:
⑴、两物体是否同时开始运动,两物体运动至相遇时运动时间可建立某种关系;
⑵、两物体各做什么形式的运动;
⑶、由两者的时间关系,根据两者的运动形式建立位移的矢量方程。
【例1】1999年5月11日《北京晚报》报道了一位青年奋勇接住一个从15层高楼窗口落下的孩子的事迹。设每层楼高是2.8m,这位青年所在的地方离高楼的水平距离为12m,这位青年以6m/s的速度匀速冲到楼窗口下方,请你估算出他要接住小孩至多允许他有的反应时间(反应时间指人从发现情况到采取相应行动经过的时间)。 (g取10m/s2)
【答案】0.8s
【针对练习1】一人站在离公路h=50m远处,如图所示,公路上有一辆汽车以v1=10m/s的速度行驶,当汽车到A点与在B点的人相距d=200m时,人以v2=3m/s的平均速度奔跑,为了使人跑到公路上恰与汽车相遇,则此人应该朝哪个方向跑?
【答案】此人要朝与AB连线夹角α=arcsin(5/6)的方向跑
二、追及
指两物体同向运动而达到同一位置。找出两者的时间关系、位移关系是解决追及问题的关键,同时追及物与被追及物的速度恰好相等时临界条件,往往是解决问题的重要条件:
(1)类型一:一定能追上类
特点:
①追击者的速度最终能超过被追击者的速度。
②追上之前有最大距离发生在两者速度相等时。
【例2】一辆汽车在十字路口等绿灯,当绿灯亮时汽车以3m/s2的加速度开使行驶,恰在这时一辆自行车在汽车前方相距18m的地方以6m/s的速度匀速行驶,则何时相距最远?最远间距是多少?何时相遇?相遇时汽车速度是多大?
【方法提炼】解决这类追击问题的思路:
①根据对两物体运动过程的分析,画运动示意图
②由运动示意图中找两物体间的位移关系,时间关系
③联立方程求解,并对结果加以验证
【针对练习2】一辆执勤的警车停在公路边,当警员发现从他旁边驶过的货车(以8m/s的速度匀速行驶)有违章行为时,决定前去追赶,经2.5s将警车发动起来,以2m/s2的加速度匀加速追赶。求:①发现后经多长时间能追上违章货车?②追上前,两车最大间距是多少?
(2)、类型二:不一定能追上类
特点:
①被追击者的速度最终能超过追击者的速度。
②两者速度相等时如果还没有追上,则追不上,且有最小距离。
【例3】一辆汽车在十字路口等绿灯,当绿灯亮时汽车以3m/s2的加速度开使行驶,恰在这时一辆自行车在汽车后方相距20m的地方以6m/s的速度匀速行驶,则自行车能否追上汽车?若追不上,两车间的最小间距是多少?
【针对练习3】例3中若汽车在自行车前方4m的地方,则自行车能否追上汽车?若能,两车经多长时间相遇?
【答案】能追上。
设经过t追上;则有x汽+x0=x自;
3×t2/2+4=6t
得t=(6±2√3)/3s,二次相遇
相关推荐
高考院校库(挑大学·选专业,一步到位!)
高校分数线
专业分数线
高考全程导航家长入口学生入口